Fractional Laser Skin Resurfacing with SmartXide DOT. Initial Results.

Anne Le Pillouer-Prost, Department of Dermatology, Clairval Hospital, Marseilles, France
Nicola Zerbinati, Department of Dermatology, University of Insubria, Varese, Italy

INTRODUCTION
The natural ageing process together with exposure to the sun and pollution leads to a gradual deterioration of the skin’s structure and function. This is mainly evident at the level of the epidermis and the upper papillary dermis, with a tissue laxity and skin that appears more lined, often accompanied by telangiectasias, wrinkles, and dark spots. Resurfacing with ultra-pulsed CO₂ has always been considered the first choice of treatment for rhytids and photo-damaged facial skin. However, due to the lengthy recovery times and frequent complications, very few patients agree to undergo this type of operation. Besides the usual recovery time required for oedema, burning, scabs and erythema which may often last for months, there is also a high incidence of complications connected with hyper-and hypo-pigmentation, scarring, HSV infection, outbreaks of acne, milia formation, and dermatitis.

Over recent years, the market has therefore been orientated towards less invasive and less problematic systems and methods. This has led to a wide-scale production of a myriad of non-ablative devices for reducing wrinkles and improving photo-damaged skin with the consequent passing over from “skin resurfacing” to “skin rejuvenation”. This situation has stimulated the search for new methods and protocols that are more efficient in combining quick recovery and minimal post-op risks with greater treatment efficacy. The advent of Fractional Photothermolysis, initially introduced with non-ablative methods, has given rise to the development of a new method that manages to effectively combine all the needs of both medical practitioners and patients, and namely, the Fractional Laser Skin Resurfacing (FLSR) with CO₂ laser.

Various CO₂ lasers with fractioned emission are currently available on the market. Despite the fact that all these systems are based on the same principles, they present significant differences with regard to output power, dwell-time, distance between the dots, varying scanner shapes and the laser beam profile. These differences may produce clinical results that differ greatly between one device and another.

MATERIALS AND METHOD
A CO₂ laser system called SmartXide (Deka, Florence, Italy) that works with a scanner in DOT mode has been used in each of the cases presented in this article. The SmartXide DOT system, which is a CO₂ laser with 30-watt maximum power in CW, is capable of emitting high energies in pulsed mode. In order to carry out fractioned treatments, a new pulsed emission mode called SmartPulse has also been developed. The first part of this new mode consists of a high peak power pulse that allows for rapid ablation of the epidermis and the first layers of the derma, while the second part of the pulse has low peak power allowing for targeted heating of the deeper areas of the skin.

Figs. 1 and 2: Cases of HSV infection and outbreaks of acne, after traditional resurfacing with pulsed CO₂ laser.

Fig. 3: SmartPulse laser emission.
The laser beam is focused and positioned on the adjacent dots by means of a special scanner (DOT mode). The user is also able to set the most important features of the emission, such as power, dwell-time, shape and size of the area to be treated, and the distance between the dots.

All patients enrolled in this preliminary trial were subjected to one or more treatments with the SmartXide DOT system. The interval between the sessions varied between 20 and 40 days. The objective of this initial trial was to highlight the versatility of the SmartXide DOT system in the treatment of wrinkles, skin laxity, epidermal and dermal pigmentation (including melasma), and hypertrophic scars. Additional trials are underway for enabling a careful examination of each of these treatments on a higher number of case studies. The results have only been examined visually with a follow-up varying between one month and three months after the last treatment.

RESULTS

The SmartXide DOT fractioned system has been used in this trial for verifying its effectiveness in various treatments at both an epidermal and dermal level. The first case concerns the treatment of acne scars on the cheeks of a 24 year-old girl. Already after only one treatment a reduction in the fibrous part of the scars was observed as well as a decrease in the associated pigmentation and dilatation of the pores. The parameters used were 30 W, a distance of 1,000 µm between spots, and 2 ms dwell time, corresponding to a dose of 3.3 J/cm² (Fig.4).

In the second case a 32 year-old man was treated for a keloid on his chest. Aggressive treatments were also preferred in this case (30 W, 800 µm, 2 ms and a dose of 4.5 J/cm²) due to the marked fibrotic component. After two treatments 30 days apart the results were totally satisfactory (Fig.5).

In the cases of pigmentation, the treatment must have lower fluences, such as 15 W, 500 µm and 300 µs, corresponding to a fluence of only 0.6 J/cm². All these cases gave more than satisfactory results although in the case of the melasma the sessions naturally had to be repeated 5 or 6 times (Fig. 6, 7 and 8). The fluence was increased to 7.1 J/cm² (30 W, 300 µm, 1 ms) when the lesion showed considerable thickening, as illustrated in Fig.9.

In the case of skin lines, the best treatment was obtained using an intermediate fluence (30 W, 500 µm , 1 ms, 4.1 J/cm²) for as many as 4 sessions. In
FRACTIONAL LASER SKIN RESURFACING WITH SMARTXIDE DOT. INITIAL RESULTS.

[Images of skin before and after treatment with Smartxide DOT]

Fig. 9: Epidermal Nevus. Pre and post 1 session with Smartxide DOT 30W, 300 µm distance between spots and 1 ms dwell time.

Fig. 10 and 11: Perilabial (Fig. 10) and periocular (Fig. 11) wrinkles. Pre and post 1 session with Smartxide DOT 30W, 500 µm distance between spots and 1 ms dwell time.

In this case it was possible to keep the erythema under control, limiting it to a few days. In all cases the results were excellent from both a dermatological and a cosmetological point of view (Fig. 10 and 11).

DISCUSSION

The Smartxide CO₂ laser allows for carrying out FLSR treatment by using the scanner in DOT mode. With FLSR the epithelial damage caused is less dramatic than that caused by the traditional ablative techniques. A part of the tissue remains intact during the treatment and acts like a natural bandage. The skin healing process is much faster compared to that with the Traditional Laser Skin Resurfacing (TLSR) techniques (Fig. 12 and 13). The areas treated are in fact surrounded by portions of intact tissue that help heal the damaged areas by providing new cells. The following downtime is therefore considerably reduced. Moreover, erythema is moderate and allows the patient to apply makeup immediately after the operation (Fig. 14). As illustrated in Fig. 15, the procedure the patient has to undergo is far better in the case of FLSR treatments compared TLSR. The re-epithelisation is greatly accelerated thanks to the limited epidermal damage and also begins on the first day. This aspect is fundamental for limiting the serious complications associated with every epidermal re-epithelisation process. The shorter the time required for forming a new epidermis, the lower the risk of bacterial or viral infections of the skin.

Fig. 12 and 13: Comparison between TLSR (s0W, Standard Mode, 200 µs) and FLSR (30W, DOT Mode, 2 ms, 1000 µm) effect. 4 days (Fig. 12) and 1 month (Fig. 13) after the test.

Fig. 14: Erythema 24 hours after DOT treatment with 30W power, spacing 1000 µm spacing and 2 ms dwell time.

Fig. 15: Recovery process comparison between TLSR and FLSR.
exposed derma. Another remarkable advantage is the reduction of erythema associated with the treatment, both in terms of absolute intensity and duration. This aspect is vitally important for reducing the period of social exclusion imposed by the other traditional methods.

CONCLUSION
The SmartXide DOT CO2 laser has proved to be an extremely versatile instrument in dermatology. The results obtained are excellent and in nearly all cases have given rise to full patient satisfaction. The wide range of possibilities offered by modulating the laser scanner allows for adapting the treatment to the different features and expectations of each individual patient.

By using the DOT mode, downtime is minimal and the moderate erythema allows the patient to use appropriate makeup immediately after the operation. The incidence of the typical side effects of TLSR is negligible provided the patient follows the simple recommendations given after the operation.

We established in this preliminary trial that the dose ranges differ in the case of superficial pigmented lesions (equal to or less than 1.0 J/cm²), wrinkles (from 2 to 5 J/cm²) and pronounced fibrotic lesions (over 6 J/cm²).

For all these reasons, the treatment with SmartXide DOT represents a valid aid in dermatology without any of the negative complications involved in the conventional ablative and non-ablative systems.

ACKNOWLEDGEMENTS
The authors wish to thank Eng. Lara Ronconi from El.En. SpA for her valuable contribution in drafting this paper.

REFERENCES